Классификация данных позволяет определить к какому классу относятся новые данные на обучающей выборке.
Классификация данных на основе обучающей выборки работает следующим образом. Есть несколько выборок данных, каждое значение может иметь несколько параметров и, таким образом, описывать точку в пространстве. Каждое значение эксперт (учитель) относит к одному из классов вручную. Такое обучение выборки позволяет потом новые данные автоматически классифицировать и определять степень отношения к тому или иному классу.
В созданной мной тестовом приложении классификации данных происходит на основе непараметрической оценки плотности распределения Розенблатта-Парзена. Исходными данными являются генерируемые выборки в трехмерном пространстве. Выборки генерируются по следующим параметрам: центральная точка, распределение (фактически вытянутость) и дисперсия по трем координатам.